Selasa, 29 April 2014

BAB 5 MOMEN, KEMIRINGAN DAN KURTOSIS

ARTIKEL STATISTIKA
BAB V. MOMENT, KEMIRINGAN DAN KURTOSIS
Skewness and Kurtosis
Rata-rata dan ukuran penyebaran dapat menggambarkan distribusi data tetapi tidak cukup untuk menggambarkan sifat distribusi. Untuk dapat menggambarkan karakteristik dari suatu distribusi data, kita menggunakan konsep-konsep lain yang dikenal sebagai kemiringan (skewness) dan keruncingan (kurtosis).
Skewness
Kemiringan (skewness) berarti ketidaksimetrisan. Sebuah distribusi dikatakan simetris apabila nilai-nilainya tersebar merata disekitar nilai rata-ratanya. Sebagai contoh, distribusi data berikut simetris terhadap nilai rata-ratanya, 3.
x
1
2
3
4
5
 frek (f)
5
9
12
9
5
Pada contoh gambar berikut, distribusi data tidak simetris. Gambar pertama miring (menjulur) ke arah kiri dan gambar ke-2 miring ke arah kanan.



Pada distribusi data yang simetris, mean, median dan modus bernilai sama.


Beberapa langkah-langkah perhitungan digunakan untuk menyatakan arah dan tingkat kemiringan dari sebaran data. Langkah-langkah tersebut diperkenalkan oleh Pearson.
Koefisien kemiringan(Coefficient of Skewness):

Interpretasi: Untuk distribusi data yang simetris, Sk = 0. Apabila distribusi data menjulur ke kiri (negatively skewed), Sk bernilai negatif, dan apabila menjulur ke kanan (positively skewed), SK bernilai positif. Kisaran untuk SK antara -3 dan 3.
Ukuran kemiringan yang lain adalah koefisien β1 (baca 'beta-satu'):

dimana:
Interpretasi:
Distribusi dikatakan simetris apabila nilai b1 = 0. Skewness positif atau negatif tergantung pada nilai b1 apakah bernilai positif atau negatif.
Ukuran Skewness yang sering digunakan:
Skewness Populasi:





Skewness Sampel:



Source: D. N. Joanes and C. A. Gill. "Comparing Measures of Sample Skewness and Kurtosis". The Statistician 47(1):183–189.
atau formula berikut (MS Excel):

s = standar deviasi
NB: kedua formula di atas menghasilkan nilai skewness yang sama
Interpretasi:
Distribusi dikatakan simetris apabila nilai g1 = 0. Skewness positif atau negatif tergantung pada nilai g1 apakah bernilai positif atau negatif.
Menurut Bulmer, M. G., Principles of Statistics (Dover, 1979):
  • highly skewed: jika skewness kurang dari −1 atau lebih dari +1
  • moderately skewed: jika skewness antara −1 dan −½ atau antara +½ dan +1.
  • approximately symmetric: jika skewness is berada di antara −½ dan +½.
Kurtosis
Kurtosis merupakan ukuran untuk mengukur keruncingan distribusi data.



Distribusi pada gambar di atas semuanya simetris terhadap nilai rata-ratanya. Namun bentuk ketiganya tidak sama. Kurva berwarna biru dikenal sebagai mesokurtik (kurva normal), kurva berwarna merah dikenal sebagai leptokurtik (kurva runcing) dan kurva berwarna hijau dikenal sebagai platikurtik (kurva datar).
Kurtosis dihitung dengan menggunakan koefisien Pearson, β2 (baca 'beta - dua').



dimana:
Ukuran Kurtosis yang sering digunakan:
Kurtosis Populasi:



Kurtosis:
Excess Kurtosis: 

Kurtosis Sampel:



atau formula berikut (MS Excel):

s = standar deviasi
NB: Excel menggunakan nilai Excess Kurtosis. Hasil perhitungan dari kedua formula di atas, menghasilkan nilai yang sama
Interpretasi:
Distribusi dikatakan:
  • Mesokurtik (Normal) jika b2 = 3
  • Leptokurtik jika b2 > 3
  • platikurtik jika b2 < 3

Analisis Korelasi Product Moment dalam Statistika


Analisis korelasi merupakan salah satu teknik statistik yang digunakan untuk menganalisis hubungan antara dua variabel atau lebih yang bersifat kuantitatif. Salah satu dari analisis korelasi tersebut adalah analisis korelasi product moment (Pearson). Variabel yang digunakan disini terbagi dua yaitu variabel bebas (x) dengan variabel terikat (y), dengan ketentuan data memiliki syarat-syarat tertentu.

Korelasi Pearson Product Moment (r) dapat diformulasikan sbb:



dengan ketentuan −1 ≤ r ≤ r . Dan interpretasi koefisien korelasi nilai r ini dapat dirangkum dalam tabel berikut:



Langkah-langkah yang diperlukan untuk uji korelasi Pearson Product Moment adalah sebagai berikut :
  1. Rumuskan hipotesis Ha dan Ho dalam bentuk kalimat.
  2. Rumuskan hipotesis Ha dan Ho dalam bentuk statistik.
  3. Buat tabel pembantu.
  4. Tentukan r
  5. Tentukan nilai KP
  6. Lakukan uji signifikansi.
  7. Tentukan α , dengan derajat bebas db = n − 2 .
  8. Tentukan konklusi
 
 
SUMBER :
http://rezkysy.blogspot.com/2012/10/analisis-korelasi-product-moment-dalam.html 

BAB 9 ANALISIS REGRESI DAN KORELASI

ARTIKEL STATISTIKA
BAB 9. ANALISIS REGRESI & ANALISIS KORELASI


A.    KORELASI 
1. PENGERTIAN KORELASI
 
Korelasi merupakan teknik analisis yang termasuk dalam salah satu teknik pengukuran asosiasi / hubungan (measures of association). Pengukuran asosiasi merupakan istilah umum yang mengacu pada sekelompok teknik dalam statistik bivariat yang digunakan untuk mengukur kekuatan hubungan antara dua variabel. Diantara sekian banyak teknik-teknik pengukuran asosiasi, terdapat dua teknik korelasi yang sangat populer sampai sekarang, yaitu Korelasi Pearson Product Moment dan Korelasi Rank Spearman. Selain kedua teknik tersebut, terdapat pula teknik-teknik korelasi lain, seperti Kendal, Chi-Square, Phi Coefficient, Goodman-Kruskal, Somer, dan Wilson.
Pengukuran asosiasi mengenakan nilai numerik untuk mengetahui tingkatan asosiasi atau kekuatan hubungan antara variabel. Dua variabel dikatakan berasosiasi jika perilaku variabel yang satu mempengaruhi variabel yang lain. Jika tidak terjadi pengaruh, maka kedua variabel tersebut disebut independen.
Korelasi bermanfaat untuk mengukur kekuatan hubungan antara dua variabel (kadang lebih dari dua variabel) dengan skala-skala tertentu, misalnya Pearson data harus berskala interval atau rasio; Spearman dan Kendal menggunakan skala ordinal; Chi Square menggunakan data nominal. Kuat lemah hubungan diukur diantara jarak (range) 0 sampai dengan 1. Korelasi mempunyai kemungkinan pengujian hipotesis dua arah (two tailed). Korelasi searah jika nilai koefesien korelasi diketemukan positif; sebaliknya jika nilai koefesien korelasi negatif, korelasi disebut tidak searah. Yang dimaksud dengan koefesien korelasi ialah suatu pengukuran statistik kovariasi atau asosiasi antara dua variabel. Jika koefesien korelasi diketemukan tidak sama dengan nol (0), maka terdapat ketergantungan antara dua variabel tersebut. Jika koefesien korelasi diketemukan +1. maka hubungan tersebut disebut sebagai korelasi sempurna atau hubungan linear sempurna dengan kemiringan (slope) positif.
Jika koefesien korelasi diketemukan -1. maka hubungan tersebut disebut sebagai korelasi sempurna atau hubungan linear sempurna dengan kemiringan (slope) negatif. Dalam korelasi sempurna tidak diperlukan lagi pengujian hipotesis, karena kedua variabel mempunyai hubungan linear yang sempurna. Artinya variabel X mempengaruhi variabel Y secara sempurna. Jika korelasi sama dengan nol (0), maka tidak terdapat hubungan antara kedua variabel tersebut. Dalam korelasi sebenarnya tidak dikenal istilah variabel bebas dan variabel tergantung. Biasanya dalam penghitungan digunakan simbol X untuk variabel pertama dan Y untuk variabel kedua. Dalam contoh hubungan antara variabel remunerasi dengan kepuasan kerja, maka variabel remunerasi merupakan variabel X dan kepuasan kerja merupakan variabel Y.

2. KEGUNAAN
            Pengukuran asosiasi berguna untuk mengukur kekuatan (strength) hubungan antar dua variabel atau lebih. Contoh: mengukur hubungan antara variabel:
-Motivasi kerja dengan produktivitas
-Kualitas layanan dengan kepuasan pelanggan
-Tingkat inflasi dengan IHSG
Pengukuran ini hubungan antara dua variabel untuk masing-masing kasus akan menghasilkan keputusan, diantaranya:
-Hubungan kedua variabel tidak ada
-Hubungan kedua variabel lemah
-Hubungan kedua variabel cukup kuat
-Hubungan kedua variabel kuat
-Hubungan kedua variabel sangat kuat
Penentuan tersebut didasarkan pada kriteria yang menyebutkan jika hubungan mendekati 1, maka hubungan semakin kuat; sebaliknya jika hubungan mendekati 0, maka hubungan semakin lemah.

3. ANALISIS KORELASI
3.1 Analisis Korelasi Parsial
 
Analisis korelasi parsial (Partial Correlation) digunakan untuk mengetahui hubungan antara dua variabel dimana variabel lainnya yang dianggap berpengaruh dikendalikan atau dibuat tetap (sebagai variabel kontrol). Nilai korelasi (r) berkisar antar 1 sampai -1, nilai semakin mendekati 1 atau -1 berarti hubungan antara dua variabel semakin kuat, dan sebaliknya. Nilai positif menunjukkan hubungan searah (X naik maka Y naik) dan nilai negatif menunjukkan hubungan terbalik (X naik maka Y turun). Data yang digunakan biasanya berskala interval atau rasio. Menurut Sugiyono (2007) pedoman untuk memberikan interpretasi koefisien korelasi sebagai berikut:

0,00 – 0,199 = sangat rendah
0,20 – 0,399 = rendah
0,40 – 0,599 = sedang
0,60 – 0,799 = kuat
0,80 – 1,000 = sangat kuat
Contoh kasus:
 
Kita mengambil contoh pada kasus korelasi sederhana di atas dengan menambahkan satu variabel kontrol. Seorang mahasiswa bernama Andi melakukan penelitian dengan menggunakan alat ukur skala. Andi ingin meneliti tentang hubungan antara kecerdasan dengan prestasi belajar jika terdapat faktor tingkat stress pada siswa yang diduga mempengaruhi akan dikendalikan. Dengan ini Andi membuat 2 variabel yaitu kecerdasan dan prestasi belajar dan 1 variabel kontrol yaitu tingkat stress. Tiap-tiap variabel dibuat beberapa butir pertanyaan dengan menggunakan skala Likert, yaitu angka 1=sangat tidak setuju, 2=tidak setuju, 3=setuju, dan 4=sangat setuju. Setelah membagikan skala kepada 12 responden didapatlah skor total item-item yaitu sebagai berikut:

Tabel Tabulasi Data (data fiktif)
Subjek Kecerdasan Prestasi Belajar Tingkat Stress

1 33 58 25
2 32 52 28
3 21 48 32
4 34 49 27
5 34 52 27
6 35 57 25
7 32 55 30
8 21 50 31
9 21 48 34
10 35 54 28
11 36 56 24
12 21 47 29 
3.2 Analisis Korelasi Product Moment

Digunakan untuk menentukan besarnya koefisien korelasi jika data yang digunakan berskala interval atau rasio. Rumus yang digunakan:
Contoh kasus:
Seorang mahasiswa melakukan survei untuk meneliti apakah ada korelasi antara pendapatan mingguan dan besarnya tabungan mingguan di P’Qerto.

Untuk menjawab permasalahan tersebut diambil sampel sebanyak 10 kepala keluarga.
Cara melakukan perhitungan manual uji korelasi di atas adalah sebagai berikut:
Asumsi uji korelasi
Sebelum diimplementasi, uji korelasi harus memenuhi serangkaian asumsi, yaitu:
1. Normalitas, artinya sebaran variabel-variabel yang hendak dikorelasikan harus berdistribusi normal.
2. Linieritas, artinya hubungan antara dua variabel harus linier, misalnya ditunjukkan lewat straight-line.
3. Ordinal, artinya variabel harus diukur dengan minimal skala ordinal.
4. Homoskedastisitas, artinya variabilitas skor di variabel Y harus tetap konstan di semua nilai variabel X.

Kriteria Penerimaan Hipotesis
H0 : tidak terdapat korelasi positif antara tabungan dengan pendapatan
Ha : terdapat korelasi positif antara tabungan dengan pendapatan
H0 diterima jika r hitung ≤ r tabel ( , n-2) atau t hitung ≤ ttabel ( , n-2)
Ha diterima jika r hitung > r tabel ( , n-2) atau t hitung > ttabel ( , n-2)
Sampel: 10 kepala keluarga
Data yang dikumpulkan:
Tabungan 2 4 6 6 8 8 9 8 9 10
pendapatan 10 20 50 55 60 65 75 70 81 85

Analisis data:

N Xi Yi Xi^2 Yi^2 XY
1 2 10 4 100 20
2 4 20 16 400 80
3 6 50 36 2500 300
4 6 55 36 3025 330
5 8 60 64 3600 480
6 8 65 64 4225 520
7 9 75 81 5625 675
8 8 70 64 4900 560
9 9 81 81 6561 729
10 10 85 100 7225 850
jumlah 70 571 546 38161 4544

Pengujian hipotesis:
Dengan kriteria r hitung: r hitung (0,981) > r tabel (0,707)
Dengan kriteria t hitung:
t hitung (14,233) > t tabel (1,86)

kesimpulan:
karena r hitung > dari r tabel maka Ha diterima, karena t hitung > t tabel maka Ha diterima
“terdapat korelasi positif antara pendapatan dengan tabungan mingguan di P’Qerto”
Pemikiran utama korelasi product momen adalah seperti ini:
1. Jika kenaikan kuantitas dari suatu variabel diikuti dengan kenaikan kuantitas dari variabel lain, maka dapat kita katakan kedua variabel ini memiliki korelasi yang positif. Jika kenaikan kuantitas dari suatu variabel sama besar atau mendekati besarnya kenaikan kuantitas dari suatu variabel lain dalam satuan SD, maka korelasi kedua variabel akan mendekati.
2. Jika kenaikan kuantitas dari suatu variabel diikuti dengan penurunan kuantitas dari variabel lain,maka dapat kita katakan kedua variabel ini memiliki korelasi yang negatif. Jika kenaikan kuantitas dari suatu variabel sama besar atau mendekati besarnya penurunan kuantitas dari variabel lain dalam satuan SD,maka korelasi kedua variabel akan mendekati -1.
3. Jika kenaikan kuantitas dari suatu variabel diikuti oleh kenaikan dan penurunan kuantitas secara random dari variabel lain atau jika kenaikan suatu variabel tidak diikuti oleh kenaikan atau penurunan kuantitas variabel lain (nilai dari variabel lain stabil), maka dapat dikatakan kedua variabel itu tidak berkorelasi atau memiliki korelasi yang mendekati nol.
           Dari pemikiran ini kemudian lahirlah Rumus Korelasi Product Momen Pearson seperti yang sering kita lihat di buku. Ada beberapa rumus yang dapat diacu. Semuanya akan memberikan hasil r yang sama, hanya saja dengan melihatnya kita akan dapat melihat pemaknaan yang berbeda-beda.
Ada beberapa hal yang dapat kita pelajari dari rumus ini :

Rumus pertama :
           Jika setiap subjek yang memiliki nilai X lebih rendah dari meannya, memiliki nilai Y yang juga lebih rendah dari meannya, nilai r akan menjadi positif. Begitu juga jika setiap subjek yang memiliki nilai X lebih tinggi dari meannya, memiliki nilai Y yang lebih tinggi dari meannya. Jika setiap subjek yang memiliki nilai X yang lebih tinggi dari meannya, memiliki nilai Y yang lebih rendah dari meannya maka nilai r akan menjadi negatif. Begitu juga jika tiap subjek yang memiliki nilai X lebih rendah dari meannya memiliki nilai Y yang lebih tinggi dari meannya. Jika tiap nilai X yang lebih tinggi dari meannya terkadang diikuti oleh nilai Y yang lebih tinggi terkadang lebih rendah dari meannya maka nilai r akan cenderung mendekati 0 (nol).

Rumus kedua:
          Dari rumus kedua ini dapat kita simpulkan bahwa nilai korelasi sebenarnya nilai kovarian dari dua variabel x dan y yang distandardkan dengan menggunakan standard deviasi x dan standard deviasi y sebagai denominatornya. Nilai kovarian sangat dipengaruhi oleh satuan skala yang digunakan oleh kedua variabel. Misalnya kita menghitung kovarian dari tinggi badan dengan panjang rambut , pengen tahu apakah tinggi badan berkorelasi dengan panjang rambut. Kita menghitung tinggi badan dan panjang rambut dalam satuan meter. Kemudian kita hitung kovariannya. Setelah itu kita menggunakan data yang sama, hanya mengubah satuannya menjadi centimeter, lalu menghitung kovariannya. Nah kovarian dari hasil perhitungan kedua akan terlihat lebih besar daripada yang pertama. Lebih besar? Ya karena dengan menggunakan satuan centimeter, 1.4 meter akan menjadi 140 centimeter. Jika kita hitung kovariannya, perhitungan pertama akan menghitung dalam skala satuan (1.4, 1.5, dst) sementara perhitungan kedua akan menghitung dalam skala ratusan. Oleh karena itu perlu distandardkan agar data yang sama akan menghasilkan angka yang sama meskipun diubah skalanya.

Rumus ketiga:
           Zx dan Zy itu berbicara mengenai nilai X dan Y dalam satuan SD. Jika nilai X ada di bawah mean dari X maka nilai Zx akan negatif, jika nilai X ada di atas meannya maka nilai Zx akan positif. Begitu juga dengan Y. Seperti pada rumus pertama, jika Zx dan Zy sepakat (keduanya positif atau negatif) maka nilai r akan positif. Jika Zx dan Zy berlawanan (jika yang satu positif yang lain negatif) maka nilai r akan negatif. Nah misalnya ada seratus subjek memiliki nilai X dan Y. Lalu kita hitung satu-satu nilai Z dari X dan Y untuk tiap subjek. Tentu saja ada beberapa yang sangat sepakat yang lain agak sepakat yang beberapa berlawanan. Kemudian nilai-nilai Z ini dijumlahkan sehingga jika yang sepakat lebih banyak akan menghasilkan angka positif. Kalo yang berlawanan lebih banyak akan menghasilkan angka negatif. Kemudian hasil penjumlahan ini dicari rata-ratanya. Jadi bisa dibilang nilai r itu akan menggambarkan rata-rata keadaan X dan Y dari semua subjek dalam kelompok.
A.    REGRESI 
1. PENGERTIAN
 
Analisis regresi dalam statistika adalah salah satu metode untuk menentukan hubungan sebab-akibat antara satu variabel dengan variabel(-variabel) yang lain. Variabel “penyebab” disebut dengan bermacam-macam istilah: variabel penjelas, variabel eksplanatorik, variabel independen, atau secara bebas, variabel X (karena seringkali digambarkan dalam grafik sebagai absis, atau sumbu X). Variabel terkena akibat dikenal sebagai variabel yang dipengaruhi, variabel dependen, variabel terikat, atau variabel Y. Kedua variabel ini dapat merupakan variabel acak (random), namun variabel yang dipengaruhi harus selalu variabel acak. Analisis regresi adalah salah satu analisis yang paling populer dan luas pemakaiannya. Hampir semua bidang ilmu yang memerlukan analisis sebab-akibat boleh dipastikan mengenal analisis ini.

2. KEGUNAAN
Tujuan menggunakan analisis regresi ialah:
-Membuat estimasi rata-rata dan nilai variabel tergantung dengan didasarkan pada nilai variabel bebas.
-Menguji hipotesis karakteristik dependensi
-Untuk meramalkan nilai rata-rata variabel bebas dengan didasarkan pada nilai variabel bebas diluar jangkaun sample.
 
3. ANALISIS REGRESI
3.1 Analisis Regresi Berganda
            Regresi berganda seringkali digunakan untuk mengatasi permasalahan analisis regresi yang melibatkan hubungan dari dua atau lebih variabel bebas. Pada awalnya regresi berganda dikembangkan oleh ahli ekonometri untuk membantu meramalkan akibat dari aktivitas-aktivitas ekonomi pada berbagai segmen ekonomi. Misalnya laporan tentang peramalan masa depan perekonomian di jurnal-jurnal ekonomi (Business Week, Wal Street Journal, dll), yang didasarkan pada model-model ekonometrik dengan analisis berganda sebagai alatnya. Persamaan regresi linear berganda sebagai berikut:

Y’ = a+b1X1+b2X2+….+ bnXn

Keterangan:
Y’ : variabel dependen (nilai yag diprediksikan)
X1 dan X2 : variabel independen
a : konstanta
b : koefisien regresi(nilai peningkatan/penurunan)
contoh kasus:
Seorang peneliti ingin mengetahui pengaruh dari tinggi badan terhadap berat badan. Untuk kebutuhan penelitian tersebut diambil sampel secara acak sebanyak 10 orang untuk diteliti. Hasil pengumpulan data diketahui data sebagai berikut :

Berdasarkan data tersebut di atas :

Hitunglah nilai a dan b untuk persamaan regersi linier sederhana. Jika hipotesis penelitian menyatakan bahwa “tinggi badan seseorang berpengaruh terhadap berat badan seseorang”, ujilah hipotesis tersebut dengan menggunakan Uji T dan Uji F (tingkat keyakinan sebesar 95%). Hitunglah nilai r dan koefisien determinasi. Bagaimana kesimpulannya !

Jawab :

Hipotesis penelitian : Tinggi Badan berpengaruh terhadap Berat Badan Seseorang (karena hanya dikatakan berpengaruh maka menggunakan uji dua arah).

Jika Y : Berat Badan Seseorang dan X : Tinggi Badan Seseorang, maka untuk mendapatkan nilai a dan b untuk persamaan regersi linier sederhana :
Berdasarkan hasil pengolahan data tersebut di atas maka dapat dibuat persamaan regresi linier sederhana : Y = – 73,72041 + 0,819657 X
Untuk menguji hipotesis secara parsial digunakan Uji T, yaitu :

Hipotesis Statistik adalah Ho : b = 0 dan Ha : b ≠ 0 (disebut uji dua arah)
Nilai T hitung adalah : b/Sb = 0,819657/0,05525673 = 14,833613932638 = 14,834
Nilai T tabel dengan df : 10 – 2 = 8 dan ½ α = 2,5% (uji dua arah) sebesar ± 2,306

Karena nilai T hitung lebih besar dari pada T tabel atau 14,834 > 2,306 maka Ho ditolak, Ha diterima dan hipotesis penelitian yang menyatakan bahwa Tinggi Badan berpengaruh terhadap Berat Badan Seseorang adalah dapat diterima (dapat dikatakan signifikan secara statistik).
Sedangkan untuk menguji secara serempak digunakan Uji F, yaitu diperoleh F hitung = 31.874,98 dan Untuk nilai F tabel dengan df : k – 1 ; n – k = 1 ; 8 dan α : 5% sebesar 5,32. Karena nilai F hitung lebih besar dari F tabel atau 31.874,98 > 5,32 maka Ho ditolak, Ha diterima dan hipotesis penelitian yang menyatakan bahwa Tinggi Badan berpengaruh terhadap Berat Badan Seseorang adalah dapat diterima.

3.3 Analisis Regresi Sederhana

            Regresi Linier Sederhana Regresi linier sederhana bertujuan mempelajari hubungan linier antara dua variabel. Dua variabel ini dibedakan menjadi variabel bebas (X) dan variabel tak bebas (Y). Variabel bebas adalah variabel yang bisa dikontrol sedangkan variabel tak bebas adalah variabel yang mencerminkan respon dari variabel bebas.

            Statistik regresi dapat didapatkan dengan berbagai cara, diantaranya ialah dengan menggunakan metode tangan bebas dan metode kuadrat terkecil. Dengan menggunakan metode kuadrat terkecil maka nilai a dan b dapat langsung dicari menggunakan rumus di bawah ini:
Contoh:
Diketahui peubah nilai skor tes masuk (X) dengan nilai ekonomi (Y) sebagai berikut:

Mahasiswa Skor tes (X) Nilai ekonomi (Y)
1 65 65
2 50 74
3 55 76
4 65 90
5 55 85
6 70 87
7 65 94
8 70 98
9 55 81
10 70 91
11 50 76
12 55 74
Berdasarkan data diatas tentukan hubungan matematis antara skor tes masuk dengan nilai ekonomi.

Jawaban:
Sehingga persamaan regresinya ialah:
Y= 30,056 + 0,897 X
SUMBER : 
 http://fariidaelf.wordpress.com/materi-kuliah/korelasi-regresi/

BAB 8 ANALISIS VARIAN

ARTIKEL STATISTIKA
BAB 8. ANALISIS VARIANSI


Analisis variansi adalah suatu prosedur untuk uji perbedaan mean beberapa populasi. Konsep analisis variansi didasarkan pada konsep distribusi F dan biasanya dapat diaplikasikan untuk berbagai macam kasus maupun dalam analisis hubungan antara berbagai varabel yang diamati. Dalam perhitungan statistik, analisis Variansi sangat dipengaruhi asumsi-asumsi yang digunakan seperti kenormalan dari distribusi, homogenitas variansi dan kebebasan dari kesalahan.
Asumsi kenormalan distribusi memberi penjelasan terhadap karakteristik data setiap kelompok. Asumsi adanya homogenitas variansi menjelaskan bahwa variansi dalam masing-masing kelompok dianggap sama. Sedangkan asumsi bebas menjelaskan bahwa variansi masing-masing terhadap rata-ratanya pada setiap kelompok bersifat saling bebas. Analisis variansi adalah suatu prosedur untuk uji perbedaan mean beberapa populasi (lebih dari dua).
Hipotesis ANOVA satu arah

H0 : μ1= μ 2 = μ 3 = … = μ k
- Seluruh mean populasi adalah sama
- Tidak ada efek treatment ( tidak ada keragaman mean dalam grup )

H1 : tidak seluruhnya mean populasi adalah sama
- Terdapat sebuah efek treatment
- Tidak seluruh mean populasi berbeda ( beberapa pasang mungkin sama )
Partisi Variansi
Variansi total dapat dibagi menjadi 2 bagian :
SST = SSG + SSW
SST            : Total sum of squares (jumlah kuadrat total) yaitu penyebaran agregat nilai data individu melalui beberapa level faktor .
SSG/SSB    : Sum of squares between-grup (Jumlah kuadrat antara) yaitu penyebaran diantara mean sampel faktor .
SSW/SSE  : Sum of squares within-grup (jumlah kuadrat dalam) yaitu penyebaran yang terdapat diantara nilai data dalam sebuah level faktor tertentu .
Rumus jumlah kuadarat total ( total sum of squares )
SST = SSG + SSW
 



Dimana :

SST  : total sum of squares ( jumlah kadarat total )
k       : levels of treatment ( jumlah populasi )
ni      : ukuran sampel dari poplasi i
x ij    : pengukuran ke-j dari populsi ke-i
x       : mean keseluruhan ( dari seluruh nilai data )


Variansi total





Rumus untuk mencari variasi jumlah kuadrat dalam
 

Keterangan :
SSW/SSE  : jumlah kuadrat dalam
k                : levels of treatment ( jumlah populasi )
ni               : ukuran sampel dari poplasi i
x ij             : pengukuran ke-j dari populsi ke-i
x                : mean keseluruhaN ( dari seluruh nilai data )


Rumus untuk mencari varisi diantara grup



Keterangan :
SSB/SSG   : jumlah kuadrat diantara
k               : levels of treatment ( jumlah populasi )
ni              : ukuran sampel dari poplasi i
x ij            : pengukuran ke-j dari populsi ke-i
x               : mean keseluruhan ( dari seluruh nilai data )

Rumus variasi dalam kelompok

MSW =SSW/N-K

Dimana:
MSW  : Rata-rata variasi dalam kelompok
SSW   : jumlah kuadrat dalam
N-K    : derajat bebas dari SSW
Rumus variasi diantara kelompok

MSG = SSG/K-1
Dimana :
MSG/SSW  : Rata-rata variasi diantara kelompok
SSG            : jumlah kuadrat antara
k-1              : derajat bebas SSG

SUMBER : 
https://exponensial.wordpress.com/2010/01/01/anova-satu-arah-one-way-anova/